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The turbulent flow generated by an oscillating pressure gradient close to an infinite
plate is studied by means of numerical simulations of the Navier–Stokes equations
to analyse the characteristics of the steady streaming generated within the boundary
layer. When the pressure gradient that drives the flow is given by a single harmonic
component, the time average over a cycle of the flow rate in the boundary layer takes
both positive and negative values and the steady streaming computed by averaging
the flow over n cycles tends to zero as n tends to infinity. On the other hand, when
the pressure gradient is given by the sum of two harmonic components, with angular
frequencies ω1 and ω2 = 2ω1, the time average over a cycle of the flow rate does not
change sign. In this case steady streaming is generated within the boundary layer and
it persists in the irrotational region. It is shown both theoretically and numerically
that in spite of the presence of steady streaming, the time average over n cycles of the
hydrodynamic force, acting per unit area of the plate, vanishes as n tends to infinity.

1. Introduction
Oscillating boundary layers have attracted the attention of many researchers

because of their importance in many phenomena of both scientific and engineering
interest, such as water wave propagation, unsteady flows in pipes and biological flows.
The wall boundary layer driven by a sinusoidally oscillating pressure gradient (Stokes
boundary layer) has been studied experimentally by Hino, Sawamoto & Takasu
(1976), Hino et al. (1983), Jensen, Sumer & Fredsøe (1989), Eckmann & Grotberg
(1991), Akhavan, Kamm & Shapiro (1991a), Lodahl, Sumer & Fredsøe (1998). Various
theoretical works such as von Kerczek & Davis (1974), Hall (1978), Cowley (1987),
Wu (1992), Hall (2003), Blennerhassett & Bassom (2006) have addressed the stability
of the Stokes layer. The Stokes boundary layer has also been studied numerically by
Spalart & Baldwin (1987), Akhavan, Kamm & Shapiro (1991b), Vittori & Verzicco
(1998), Costamagna, Vittori & Blondeaux (2003). Herein the Reynolds number Rδ of
the Stokes boundary layer is defined as Rδ = U ∗

0

√
2ν∗/ω∗/ν∗, where U ∗

0 and ω∗ are the
amplitude and the angular frequency of velocity oscillations far from the wall and ν∗

is the kinematic viscosity of the fluid. The length δ∗ =
√

2ν∗/ω∗ is the conventional
thickness of the Stokes boundary layer.

On the basis of the results reported in the literature, as the value of the Reynolds
number increases, the flow in the Stokes boundary layer goes through four regimes:
(i) for low Reynolds numbers the flow is laminar and unidirectional and is described
by the well-known Stokes solution (Stokes 1851); (ii) for Rδ larger than about 100
the disturbed laminar regime begins, where small perturbations are observed, but the
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flow remains similar to the Stokes solution; (iii) when the Reynolds number becomes
larger than about 550 the flow is in the intermittently turbulent regime in which
the perturbations grow and turbulent bursts appear during the decelerating phase of
the cycle; the flow is thus significantly different from the Stokes solution; (iv) for
Reynolds number larger than about 3500 the flow is in the fully developed turbulent
regime (Jensen et al. 1989) where turbulence is present throughout the cycle.

An interesting phenomenon that often appears in oscillating boundary layers is the
generation of steady streaming (see Riley 2001 for a broad review on the subject).
Rayleigh (1883) was the first to study the generation of steady streaming in a
flow dominated by an oscillatory velocity component. In particular, he analysed the
mechanism by which an acoustic wave in a closed duct induces steady streaming
and determined the Eulerian drift in the wall boundary layer. The presence of steady
streaming directed shoreward in the laminar oscillating boundary layer at the bottom
of a sea wave propagating over a plane bed was demonstrated by Longuet-Higgins
(1953). According to the theory developed by him, the steady streaming velocity
u∗

∞ far from the bottom satisfies the relation u∗
∞c∗/U ∗2

0 = 0.75, where c∗ is the wave
speed. The Longuet-Higgins steady streaming arises because the spatial variability
of the flow characteristics in the wave bottom boundary layer generates nonlinear
interactions which produce a period-averaged velocity component. The experimental
observations of Russel & Osorio (1958) have confirmed the theoretical finding of
Longuet-Higgins (1953) for waves of small amplitude propagating over a flat smooth
bed and characterized by a laminar bottom boundary layer. In an appendix to the
paper of Russel & Osorio (1958), Longuet-Higgins (1958) showed that if the eddy
viscosity in a turbulent boundary layer is considered independent of time, the steady
streaming velocity at the edge of the boundary layer takes the same value as in the
laminar flow. The theory of Longuet-Higgins (1958) agrees with the experiments of
Russel & Osorio (1958) but in the latter the flow was probably in the disturbed
laminar regime as the Reynolds number was relatively low. Subsequent experimental
works of Brebner, Askew & Law (1966), Bijker, Kalkwijk & Picters (1974) and Van
Doorn (1981) have indeed shown that the steady streaming velocity at the edge of a
turbulent boundary layer is smaller than the value determined by Longuet-Higgins
(1958). Moreover, in some shallow depth experiments, an offshore directed (i.e. in
the direction opposite to that of the wave propagation) steady streaming has been
observed.

In a turbulent wave bottom boundary layer an offshore directed steady streaming
also arises because of the wave asymmetry. The underlying mechanism that generates
steady streaming when the wave is asymmetric is due to the different characteristics
of turbulence during the seaward and landward half-cycles. The steady streaming
generated by the wave asymmetry is opposite to the Longuet-Higgins steady
streaming, thus explaining why the direction of the steady streaming in a turbulent
wave boundary layer may be opposite to that of the wave propagation. The
asymmetry-wave steady streaming has been much less studied in the literature,
probably because it poses a mathematical problem whose solution cannot be tackled
by analytical means. Both the Longuet-Higgins and the asymmetry-wave steady
streamings are very important in cross-shore sediment transport by waves.

In order to understand the hydrodynamic processes involved in the generation of
steady streaming in a turbulent wave boundary layer, the two mechanisms described
above should be analysed separately first and then their interaction considered. The
aim of the present work is to study the steady streaming generated in a turbulent
oscillating boundary layer because of the wave asymmetry.
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Asymmetric waves free from the Longuet-Higgins steady streaming cannot normally
be produced in a laboratory. However, the effects of the wave asymmetry can be
analysed by using an oscillating water tunnel as in the experiments of Ribberink &
Al-Salem (1995). A spatially uniform oscillating boundary layer free from the
Longuet-Higgins steady streaming can be generated by using such a device. The
work of Ribberink & Al-Salem (1995) was mostly devoted to the study of sediment
transport under sheet flow conditions and very few results were provided about
the steady streaming induced by the wave asymmetry. The above authors reported
that, under asymmetric flow conditions, a net wave-averaged horizontal velocity was
measured against the direction of the ‘wave propagation’, or in the direction of the flow
during the trough half-cycle, which was about 4 % of the time-dependent flow velocity.

The effect of the wave asymmetry on the hydrodynamics of the wave bottom
boundary layer has been introduced into Reynolds-averaged Navier–Stokes equations
models by Trowbridge & Madsen (1984) and Jacobs (1984). The results of these studies
qualitatively agree with the previously cited experimental works. In particular, for
long waves in shallow depth the Trowbridge & Madsen (1984) model predicts steady
streaming in the direction opposite to that of the wave propagation.

Notwithstanding the works mentioned above, to the author’s knowledge, no
systematic studies have so far been performed, either experimentally or by numerical
simulation of the Navier–Stokes equations, on the steady streaming driven by
asymmetric flow conditions in a turbulent Stokes layer. Since such a flow is the
prototype of the oscillating turbulent boundary layers which are a common feature
of various environmental phenomena and applications, an improved understanding
of the characteristics of the steady streaming and of the mechanisms by which it is
generated would be highly desirable.

The paper is organized as follows. In § 2 the problem is formulated and the numerical
approach is briefly described. In § 3 the average flow quantities are introduced and a
preliminary insight is given into the mechanism that generates the steady streaming.
In § 4 the results of the simulations are reported and discussed. The conclusions are
drawn in § 5.

2. Formulation of the problem and numerical approach
We consider the oscillating flow of an incompressible Newtonian fluid generated

by a spatially constant pressure gradient close to an infinite plate. Hereinafter a star
is used to denote dimensional quantities. As a reference, we introduce a Cartesian
coordinate system with the x∗

1 - and x∗
3 -axes lying on the plate and directed along

the streamwise and the spanwise directions respectively and the x∗
2 -axis (cross-stream

direction) orthogonal to the plate and directed upwards. We assume that at the edge of
the boundary layer the flow oscillates according to the wave bottom velocity given by
the second-order approximation of the Stokes irrotational wave theory (see Dean &
Dalrymple 2000):

u∗
1 = U ∗

0 cos(ω∗t∗) + U ∗
1 cos(2ω∗t∗), u∗

2 = u∗
3 = 0, (2.1)

where U ∗
0 and U ∗

1 are the amplitudes of velocity oscillations of the first and second
harmonic components respectively and t∗ is the time. The velocity oscillations given
by equation (2.1) are asymmetric, due to the presence of two harmonic components
characterized by angular frequencies ω∗ and 2ω∗. The ratio ur = U ∗

1 /U ∗
0 represents

a measure of the wave asymmetry. It is easily to show that in order to match the
velocities (2.1), the pressure gradient that drives the flow must have the following
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form: (
∂P ∗

∂x∗
1

,
∂P ∗

∂x∗
2

,
∂P ∗

∂x∗
3

)
= (−�∗U ∗

0 ω∗ sin(ω∗t∗) − 2�∗U ∗
1 ω∗ sin(2ω∗t∗), 0, 0), (2.2)

where �∗ is the fluid density. In order to trigger transition to turbulence, the wall is
not perfectly flat and its profile is described by the superimposition of two sinusoidal
functions,

x∗
2 = η∗(x∗

1 , x
∗
3 ) = h∗[ax1

cos(α∗x∗
1 ) + ax3

cos(γ ∗x∗
3 )]. (2.3)

In (2.3), h∗axi
(i =1, 3) are the amplitudes of the sinusoidal components, and α∗ and

γ ∗ are the wavenumbers in the x∗
1 - and x∗

3 -directions respectively. After the turbulence
has developed, the run is stopped, h∗ is set to zero and the simulation is continued on
a perfectly flat wall. Generally, two periods are sufficient to get a developed turbulent
regime.

The problem is formulated in dimensionless form by introducing the following
dimensionless variables:

t = t∗ω∗, (x1, x2, x3) =
x∗

1 , x
∗
2 , x

∗
3

δ∗ , (u1, u2, u3) =
u∗

1, u
∗
2, u

∗
3

U ∗
0

, p =
p∗

�∗U ∗2
0

. (2.4)

In (2.4) u∗
1, u∗

2 and u∗
3 are the velocity components along the x∗

1 -, x∗
2 - and x∗

3 -
directions respectively, and p∗ is the pressure. The present flow is characterized by
two dimensionless parameters, namely the Reynolds number Rδ =U ∗

0 δ∗/ν∗ and the
ratio ur = U ∗

1 /U ∗
0 .

The flow is studied by direct numerical simulations of the Navier–Stokes equations
in a domain of size Lx1

, Lx2
and Lx3

in the streamwise, cross-stream and spanwise
directions respectively. On the plate the no-slip condition is introduced,

(u1, u2, u3) = 0 at x2 = η(x1, x3). (2.5)

Since the amplitudes of the wall waviness are assumed to be much smaller than the
thickness of the boundary layer (h = h∗/δ∗ � 1), the condition (2.5) can be enforced
by using the procedure outlined in Vittori & Verzicco (1998),

(u1, u2, u3) = −η(x1, x3)
∂(u1, u2, u3)

∂x2

∣∣∣∣
x2=0

+ O(h2) at x2 = 0. (2.6)

When Lx2
is large enough that the vorticity does not propagate to x2 = Lx2

, close to
the upper boundary of the computational domain the flow remains irrotational and
the velocity components (u1, u2, u3) oscillate as (cos(t) + ur cos(2t), 0, 0). Therefore,
the following boundary condition is introduced at x2 = Lx2

:

∂

∂x2

(u1, u3) = u2 = 0 at x2 = Lx2
, (2.7)

which is equivalent to imposing the vanishing of the tangential stresses. Condition
(2.7) can be considered as a symmetry boundary condition because it is equivalent to
introducing a mirror flow field with respect to the x2 =Lx2

plane.
Finally, the flow is assumed to be homogeneous along the x1- and x3-directions,

i.e. along these directions the turbulence is statistically invariant under translation;
thus periodic boundary conditions are introduced along the x1- and x3-axes. Unless
otherwise stated, in all the simulations a wavy wall, characterized by h =h∗/δ∗ =5 ×
10−4, ax1

= 1, ax3
= 0.1, α = α∗δ∗ =4π/Lx1

and γ = γ ∗δ∗ = 4π/Lx3
is introduced.
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Figure 1. Contour plot of the spanwise vorticity component Ω3 in the plane x3 = 5.9 for
h = 0.005, Rδ = 500, ur = 0; 
Ω3 = 0.002; continuous line: positive vorticity, dashed line:
negative vorticity.
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Figure 2. Time development of wall shear stress for Rδ = 1120 and ur = 0; continuous line:
numerical results; dots: experimental measurements of Jensen et al. (1989).

The numerical procedure adopted makes use of centred second-order finite
differences on a staggered grid to approximate the spatial derivatives. The time
advancement of the governing equations employs a fractional step method described
by, among others, Kim & Moin (1985) and Rai & Moin (1991). The convective terms
are evaluated explicitly by a three-step Runge–Kutta scheme (Rai & Moin 1991)
while the viscous terms are evaluated implicitly by the Crank–Nicholson scheme.

In order to show the reliability and the correctness of the numerical code, two
simulations have been performed and the results have been compared with previous
numerical solutions and experimental measurements. Vittori & Verzicco (1998)
simulated the disturbed laminar regime for Rδ = 500 and ur =0. It is known that in this
regime the perturbations to the laminar behaviour (Stokes solution) are generated by
wall imperfections or by other types of disturbances (Costamagna et al. 2003). There-
fore, as a source of disturbances Vittori & Verzicco (1998) introduced a wavy wall
described by equation (2.3) with h = 5×10−3, ax1

= 1, ax3
= 0.1, α = 0.5 and γ = 1. They

fixed the dimensions of the computational domain as Lx1
= Lx2

= 25.13, Lx3
= 12.57

and used a grid with 64, 64 and 32 gridpoints in the x1-, x2- and x3-directions
respectively. In figure 1 contour plot of the spanwise vorticity component Ω3 is shown
in a vertical plane at t = 25.13. The vorticity has been computed after the average
in the x1-direction of the velocity field has been removed. There is good agreement
between the present results and those shown in figure 5(c) of Vittori & Verzicco (1998).

A further check of the numerical code has been carried out on test 7 of Jensen
et al. (1989) (Rδ =1120). The computed wall shear stress τ = τ ∗/�U ∗2

0 averaged over
the plate is compared with that measured experimentally in figure 2. The size of
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the computational domain is the same as in the previous case and 120, 120 and 80
gridpoints have been introduced in the x1-, x2- and x3-directions respectively. The
results show that the turbulent flow field is adequately resolved by the numerical
code.

3. Average flow quantities
In order to analyse the results, we introduce the period average fpa and the steady

component f̄ of a flow quantity f as

fpa(i) =
1

T

∫ iT

(i−1)T

f (t) dt, f̄ = lim
n→∞

1

nT

∫ nT

0

f (t) dt, (3.1)

where n is an integer, T = 2π is the dimensionless period of the oscillating pressure
gradient and i is an integer used to denote the generic cycle. It can be shown that the
following equations hold:

f̄ = lim
n→∞

1

n

n∑
i=1

fpa(i) = 〈f (t)〉pa, (3.2)

where 〈f (t)〉 is the ensemble average of f defined as an average performed over an
infinite number of flow realizations. By assuming the ergodic hypothesis (Monin &
Yaglom 1971), the ensemble average can be substituted by a time average in stationary
turbulence and by a spatial average in homogeneous turbulence. In the present case
the ensemble average is approximated by performing a spatial average along the
homogeneous directions and a phase average. As the present flow is homogeneous
both in the x1- and in the x3-directions, 〈f (t)〉 and f̄ are constant on x2 = const
planes. Some insight into the physical mechanism that drives the steady current can
be gained from the Navier–Stokes equations. First, let us take the ensemble average of
the Navier–Stokes equation in the streamwise direction and then the period average,
taking into account that the period average of the pressure gradient (2.2) is equal to
zero and that the flow is homogeneous both in the x1- and x3-directions,

Rδ

∂〈u′
1u

′
2〉pa

∂x2

=
∂2〈u1〉pa

∂x2
2

, (3.3)

where u′
1 = u1 − 〈u1〉 and u′

2 = u2 − 〈u2〉. Then, by integrating (3.3) between 0 and x2

and taking into account that the Reynolds stress vanishes at x2 = 0,

Rδ〈u′
1u

′
2〉pa =

∂u1

∂x2

− ∂u1

∂x2

∣∣∣∣
x2=0

, (3.4)

where the equality 〈u1〉pa = u1 has been used. Far from the wall, where the flow is
irrotational, both the left-hand side and the first term on the right-hand side of (3.4) are
equal to zero; then (∂u1/∂x2)|x2 = 0 = 0. This result implies that the steady component
of the hydrodynamic force acting on the plate vanishes. A further integration of (3.4)
shows that

u1 = Rδ

∫ x2

0

〈u′
1u

′
2〉pa dx2. (3.5)

From equation (3.5), it is clear that the steady streaming is forced by the period
average of the Reynolds stress 〈u′

1u
′
2〉.
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Figure 3. Time development of the velocity component u1 at (x1, x2, x3) = (2.26, 0.28, 1.77)
for Rδ = 800 and ur = 0.
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Figure 4. (a) Period average of the flow rate. (b) Trend of the series Sq . Rδ = 800, ur =0.

4. Discussion of the results
In the present investigation we consider values of the flow parameters that fall in

the intermittently turbulent regime (Vittori & Verzicco 1998). A first simulation is
performed by fixing Rδ = 800 and ur = 0. The size of the computational domain is
Lx1

= Lx2
= 25.13 and Lx3

= 12.57. Such values of Lx1
, Lx2

and Lx3
are equal to those

used by Vittori & Verzicco (1998) who verified that no important changes in the
turbulent characteristics take place when the dimensions Lx1

and Lx3
are doubled. They

also showed that the averaged quantities computed with these domain dimensions
show an acceptable agreement with the experimental measurements. Vittori &
Verzicco (1998) did not investigate how the results change when the value of Lx2

is
increased. However, a value of 25.13 for Lx2

is large enough for an irrotational region
to be set up in the upper part of the computational domain (see the discussion that
leads to (2.7)). Thus, an increase of Lx2

does not affect the turbulence characteristics.
A grid with 100, 100 and 64 gridpoints in the streamwise, cross-stream and spanwise

directions respectively is employed to solve the governing equations. The appropriate
resolution of the smallest vortices obtained by means of this numerical grid is
demonstrated in Costamagna et al. (2003), where the power spectra are shown to
be characterized by an acceptable drop-off both in the x1- and in the x3-directions
even with a 64 × 64 × 32 numerical grid. In figure 3 the time development of the
velocity component u1 at (x1, x2, x3) = (2.26, 0.28, 1.77) is plotted. The qualitative
behaviour of the velocity is similar to that observed by Hino et al. (1976) and by
Vittori & Verzicco (1998). Turbulence appears explosively around the end of the
accelerating phase and persists during the first part of the decelerating phase, and
during the following accelerating phase the flow recovers a laminar-like behaviour.

The period average qpa of the flow rate q (q =
∫ Lx2

0

∫ Lx3

0
u1 dx2 dx3) takes non-zero

values, as shown in figure 4(a), where qpa is plotted versus the number n of the
cycle. The period average of the flow rate changes from cycle to cycle and takes both
positive and negative values.
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Figure 5. Time development of the velocity component u1 at (x1, x2, x3) = (2.26, 0.28, 1.77)
for Rδ = 800 and ur = 0.3.

The presence of values of qpa different from zero in a flow that is driven by
a sinusoidally oscillating pressure gradient is due to the nonlinear terms of the
governing equations, which cause the flow during a half-cycle not to be the mirror
image of that during the following half-cycle. This phenomenon can be observed
by looking at figure 3: the turbulent velocity fluctuations which appear during the
first half-cycle (980.17 < t � 983.32) are stronger and pervade a larger part of the
cycle than those which are present during the second one (983.32 < t � 986.46).
Furthermore, the disappearance of turbulence fluctuations during the fifth half-
cycle (992.74 < t � 995.88) and their sudden reappearance during the sixth one,
demonstrates the strongly random nature of the flow. However, since when ur = 0 the
pressure gradient (2.2) during a half-cycle is opposite to that during the following
half-cycle, the ensemble average of the streamwise velocity component must satisfy the
equation 〈u1(t)〉 = −〈u1(t + T/2)〉. Then, 〈q(t)〉 = −〈q(t + T/2)〉 from which it follows
that 〈q〉pa =0. We can affirm that for ur =0 the period average of the ensemble
average of q is equal to zero while the period average of q is different from zero and
can take both positive and negative values.

An attempt to show that in the present computation 〈q〉pa is equal to zero has been
made by checking that the series Sq(n) = (1/n)

∑n

i = 1 qpa(i) (see equation (3.2)) tends
to zero as the number n of cycles grows. In figure 4(b), after some oscillations of large
amplitude, the series Sq attains values close to zero. We feel that the result displayed
in figure 4(b) provides sufficient evidence that Sq does tend to zero. An improvement
of this result would be possible but a much larger number of cycles would need to be
simulated, such that the computation becomes uneconomical. To give an idea of the
computational costs of the present simulation, the results shown in figure 4 required
about 5 hours of CPU time per cycle on a 3.6 GHz Pentium processor. Since 760
cycles are shown in figure 4, the present simulation took about 3800 hours.

When ur is increased from 0 to 0.3 the flow characteristics change significantly as
can be seen in figure 5, where the time development of the velocity component u1

at (x1, x2, x3) = (2.26, 0.28, 1.77) is shown. Even in this case turbulence appears
explosively at the end of the accelerating phase but now the flow shows a remarkable
asymmetry between two consecutive half-cycles: the velocity fluctuations are larger
when the flow is directed from left to right. The fundamental difference between
qpa obtained for ur = 0 (see figure 4a) and that for ur = 0.3 (see figure 6a) is that,
apart from a few cycles, the latter is always negative while the former changes sign
randomly. The most important consequence of this behaviour is that for ur = 0.3
the steady component of q is different from zero. To show this, in figure 6(b) the
series Sq is plotted. For large n the series shows a plateau-like region where only
small variations around an average value of about −9.5 can be observed. The steady
streaming velocity profile u1, shown in figure 7, is evaluated by time averaging u1

during the time interval 496.71 � t � 2325.11, which includes 291 cycles. The steady
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Figure 6. (a) Period average of the flow rate. (b) Trend of the series Sq . Rδ = 800, ur = 0.3.
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Figure 7. Steady component of the streamwise velocity evaluated by time averaging u1 over
the time interval 496.71 � t � 2325.11. Rδ =800, ur = 0.3.
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Figure 8. Time development of the velocity component u1 in the irrotational region for
Rδ = 800, ur = 0.3.

component of the streamwise velocity clearly persists far from the wall and takes an
average value in the x2-direction which is about 3 % of the velocity amplitude U ∗

0 .
The direction of the steady streaming coincides with that of the smaller amplitude
velocity oscillations in the irrotational region (see figure 8), which is offshore in the
case of a sea wave bottom boundary layer. In figure 9(a) the period average Fpa of the
dimensionless hydrodynamic force F =F ∗/(�∗U ∗2

0 ) acting per unit area of the plate is
shown. The value of Fpa changes sign a large number of times during the simulation.
The series SF (n) = (1/n)

∑n

i = 1 Fpa(i) is shown in figure 9(b). It can be observed that
SF tends to zero when the value of n increases. This result confirms the theoretical
finding of § 3 that the steady component of the hydrodynamic force acting on the
plate is equal to zero even in the presence of steady streaming.

According to (3.5) the steady component of the streamwise velocity is forced by
the period average of the Reynolds stress, therefore it is expected that when the
Reynolds number increases the steady component of the flow rate increases as well.
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Figure 9. (a) Period average of the hydrodynamic force acting per unit area of the plate.
(b) Trend of the series SF . Rδ = 800, ur =0.3.
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Figure 10. (a) Period average of the flow rate. (b) Trend of the series Sq . Rδ = 1000, ur = 0.3.

To verify this conjecture, a simulation at Rδ = 1000 and ur = 0.3 is performed. The
size of the computational domain is fixed as in the previous case, while 120, 120 and
80 gridpoints are introduced in the streamwise, cross-stream and spanwise directions
respectively. This computation took about 19 hours of CPU time to perform one cycle
on a 3.6 GHz Pentium processor. The whole computation required about 3400 hours.

In figure 10(a) it can be observed that the period average of the flow rate is negative
for almost all the cycles. Figure 10(b) shows that the series Sq converges to a value
of about −15, which is larger than the one obtained for Rδ = 800.

Figures 11, 12 and 13 present the mean velocity profiles, the root mean square (r.m.s.)
values of the fluctuating velocity components and the Reynolds stress respectively
for 16 phases for Rδ =1000 and ur = 0.3. The mean quantities have been computed
by performing spatial averages in the planes x2 = const and phase averages over 73
cycles.

In figure 11, where the laminar velocity profiles are also displayed, it can be
observed that at the phase φ = 0 the mean velocity profile of the turbulent flow
attains its maximum value, then it decreases and reaches the minimum value at φ = π.
Because of the asymmetry of the pressure gradient that drives the flow, the absolute
value of the velocity at φ = 0 is larger than that at φ = π. While for ur = 0 there is
no difference between the laminar and the turbulent velocity profiles far from the
wall, in the present case a small difference can be observed which is equal to about
0.05 at all the phases. This result is due to the presence of negative steady streaming
generated by the Reynolds stress.

In agreement with the known results for a steady turbulent channel flow (Kim &
Moin 1987), in figure 12 〈u′

1u
′
1〉1/2 is larger than both 〈u′

2u
′
2〉1/2 and 〈u′

3u
′
3〉1/2. The

maximum value of 〈u′
1u

′
1〉1/2 is attained at φ = 0, when the streamwise velocity is

maximum, and is equal to about 0.21. The r.m.s. of u′
2 and of u′

3 are also large at
φ = 0 but they tend to grow during the first part of the decelerating phase and they
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Figure 11. Velocity profiles at different phases during the cycle; continuous line: turbulent
mean velocity profiles; dashed line: laminar velocity profiles. Rδ = 1000, ur = 0.3.

attain their maximum values, equal to 0.057 and 0.070 respectively, at φ = π/8. During
the decelerating phase 〈u′

1u
′
1〉1/2 decreases rapidly and at φ = π/2 the values of all the

r.m.s. do not differ much. From figure 12 it can also be observed that although during
the decelerating phase the values of the r.m.s. tend to decay, the turbulence spreads in
the vertical direction. During the following accelerating phase (π/2 < φ < π) the r.m.s.
grow again and attain another maximum at about φ = 7π/8. The r.m.s. decrease for
φ > π and at φ = 3π/2 they reach values close to each other as previously observed at
φ = π/2. Because of the flow asymmetry, the r.m.s. at φ = 0 are different from those
at φ = π. The ratios between the r.m.s. at φ = 0 and those at φ = π, introduced as a
measure of the degree of asymmetry, take the values 1.95, 1.38 and 1.35 for the u′

1, u′
2

and u′
3 components respectively. The largest asymmetry is shown by 〈u′

1u
′
1〉1/2 while

〈u′
2u

′
2〉1/2 and 〈u′

3u
′
3〉1/2 are characterized by asymmetries close to each other.
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Figure 12. Distribution of the r.m.s. of the fluctuating velocity components u′
1, u′

2 and u′
3;

continuous line: 〈u′
1u

′
1〉1/2; dashed line: 〈u′

2u
′
2〉1/2; dots: 〈u′

3u
′
3〉1/2. Rδ = 1000, ur = 0.3.

The asymmetry of the fluctuating velocity components gives rise to an asymmetry
in the distribution of the Reynolds stress 〈u′

1u
′
2〉, as can be observed in figure 13. The

degree of asymmetry of the Reynolds stress, evaluated according to the previously
adopted method, is equal to 2.12. Since the asymmetry of 〈u′

1u
′
1〉1/2 is the largest, the

u′
1 component should give the largest contribution to the asymmetry of the Reynolds

stress.
Although the Reynolds stress distribution during the cycle shows a remarkable

asymmetry, its period average is an order of magnitude smaller. In figure 14 〈u′
1u

′
2〉pa

has values which are an orders of magnitude smaller than the Reynolds stress in
the range 0 � x2 � 1 and two order of magnitude smaller for x2 > 1. The maximum
absolute value of 〈u′

1u
′
2〉pa occurs at x2 = 0.2 and is equal about to 9.2 × 10−5.
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Figure 13. Distribution of the Reynolds stress 〈u′
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Figure 14. (a) Steady component of the Reynolds stress. (b) Enlarged view of the steady
component of the Reynolds stress close to the wall. Rδ = 1000, ur = 0.3.
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Figure 15. Steady component of the streamwise velocity; dashed line: computed by time
averaging the streamwise velocity; continuous line: computed by using equation (3.5).
Rδ = 1000, ur = 0.3.

Apart from averaging the velocity u1, the steady streaming velocity profile u1 can
be evaluated by another procedure, i.e. by computing first the period average of the
Reynolds stress 〈u′

1u
′
2〉pa and then using equation (3.5). However, as both u1 and

〈u′
1u

′
2〉pa are evaluated by performing a time average over a finite number of cycles, it

cannot be expected that the two procedures provide exactly the same result because
they hold rigorously only when the number of cycles tends to infinity. The results
plotted in figure 14 show that the steady streaming is generated by a negative balance
of the Reynolds stress during the cycle, which should be largely due to the explosive
development of turbulence around the end of the accelerating phase. By introducing
in equation (3.5) the Reynolds stresses reported in figure 14, we have obtained the
velocity profile u1 shown in figure 15, where the velocity profile obtained by time
averaging the velocity component u1 is also displayed. It can be observed that the
two results are in a fair agreement. The spatial average in the x2-direction of the
steady streaming velocity is 4–5 % of U ∗

0 and is in reasonable agreement with the
experimental results of Ribberink & Al-Salem (1995) who performed an asymmetric
oscillatory flow experiment in a water tunnel for Rδ and ur equal to about 103 and
0.3 respectively. Because of mass conservation, in the central part of the tunnel a
return flow was present which balanced the flow due to the steady streaming close to
the walls. Unfortunately, this phenomenon does not allow a quantitative comparison
between the experiments of Ribberink & Al-Salem (1995) and present results as the
return flow strongly altered the velocity profile of the steady streaming. Moreover,
Ribberink & Al-Salem (1995) did not perform measurements sufficiently close to
the wall: by looking at figure 4 of their paper it can be observed that the first
measurement point is placed at about 14δ∗ which is too far from the wall.

5. Conclusions
The present study deals with the steady streaming generated in a spatially uniform

turbulent boundary layer driven by a purely oscillating pressure gradient. The main
results of the study can be summarized as follows:

(i) when the flow is forced by a sinusoidal oscillating pressure gradient, no steady
streaming is generated;

(ii) when the flow is generated by a pressure gradient given by the sum of two
sinusoidal functions, characterized by angular frequencies ω1 and ω2 = 2ω1, steady
streaming is generated within the boundary layer and it persists in the irrotational
region.



Steady streaming in a turbulent oscillating boundary layer 279

The generation of the steady streaming is due to non-vanishing values of the period
average of the Reynolds stress. If the integral of this quantity along the x2-direction is
negative the steady streaming is also negative, otherwise it is positive. It is shown both
theoretically and numerically that the steady component of the hydrodynamic force
acting on the plate vanishes even when a steady current is present. The numerical
simulations show that the steady streaming has the same direction as the smaller
amplitude velocity oscillations in the irrotational region. This result is due to the
larger absolute value of the Reynolds stress that develops when the flow direction
is the same as the larger velocity amplitude. In a sea wave bottom boundary layer,
the direction of the smaller velocity amplitude is offshore, so that the direction
of the asymmetry-wave steady streaming is also offshore. Moreover, in this case, the
Longuet-Higgins steady streaming, which acts in the onshore direction, is also present.
As the Longuet-Higgins steady streaming has not been included in this study, on the
basis of the present results we cannot draw definitive conclusions about the direction
and the strength of the steady streaming for a wave-induced turbulent boundary
layer. A possible development of the present work is studying the asymmetry-wave
steady streaming in the fully developed turbulent regime which characterizes the wave
boundary layer at high Reynolds numbers. Moreover, in order to improve knowledge
of the hydrodynamics of real sea wave bottom boundary layers, the Longuet-Higgins
steady streaming should also be considered in future works on this subject.
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